WednesdayMarch 20, 2019. By Jeff Meyer. Sony has finished developing a new stacked CMOS sensor that offers the company’s global shutter technology. The Pregius S sensor also uses a back-illuminated pixel structure to help reduce distortion. The sensor will begin production this month; however, Sony says its intended use is for industrial
Salah satu aspek yang dilihat saat menilai kualitas kamera digital adalah sensornya. Kita tahu sensor pada kamera digital adalah rangkaian peka cahaya, tempat gambar dibentuk dan dirubah menjadi sinyal data. Tidak semua kamera digital punya ukuran sensor yang sama. Sesuai bentuknya, kamera digital yang kecil umumnya pakai sensor yang juga kecil, sedangkan kamera mirrorless dan DSLR memakai sensor yang lebih besar. Sensor dengan luas penampang sama dengan ukuran film 35mm disebut sensor full frame. Mengapa penting untuk mengenal ukuran sensor di kamera digital? Karena ukuran sensor berkaitan dengan kemampuan menangkap cahaya dan menentukan bagus tidaknya hasil foto yang diambil. Sekeping sensor pada dasarnya merupakan sekumpulan piksel yang peka cahaya, saat ini umumnya sekeping sensor punya 10 juta piksel bahkan lebih. Makin banyak piksel, makin detil foto yang bisa direkam. Tapi saat bicara kualitas hasil foto, kita perlu mencari lebih jauh info ukuran sensornya, bukan sekedar berapa juta pikselnya saja. Megapiksel, atau resolusi sensor, saat ini seperti jadi cara efektif untuk marketing. Maka itu ponsel berkamera pun dibuat punya sensor yang megapikselnya tinggi. Pun demikian dengan kamera saku sampai kamera canggih, semua berlomba menjual megapiksel’ ini. Bayangkan sensor kecil yang dijejali piksel begitu banyak, seperti apa rapat dan sempitnya piksel-piksel itu berhimpit? Dibawah ini adalah contoh ilustrasi ukuran sensor, dua di sebelah kiri yang berwarna merah adalah mewakili sensor kecil, umumnya ditemui di kamera saku. Sensor kecil memang murah dalam hal biaya produksi, dan bisa membuat bentuk kamera jadi sangat kecil. Di sisi lain, ukuran sensor yang lebih besar memang lebih mahal dan kamera/lensanya jadi lebih besar. Tapi keuntungannya dengan luas penampang yang lebih besar, tiap piksel punya ukuran yang lebih besar dan mampu menangkap cahaya dengan lebih baik. Maka itu saat kondisi kurang cahaya, dimana kamera tentu akan menaikkan ISO kepekaan sensor, yang terjadi adalah hasil foto dari kamera dengan sensor besar punya hasil foto yang lebih baik. Sedangkan di ISO tinggi, kamera sensor kecil akan dipenuhi bercak noise yang mengganggu. Noise ini oleh kamera modern dicoba untuk dikurangi secara otomatis lewat prosesor kamera namun yang terjadi hasil fotonya jadi tidak natural seperti lukisan cat air. Sensor CMOS vs sensor CCD Perbedaan utama desain CMOS dan CCD adalah pada sirkuit digitalnya. Setiap piksel pada sensor CMOS sudah memakai sistem chip yang langsung mengkonversi tegangan menjadi data, sementara piksel-piksel pada sensor CCD hanya berupa photodioda yang mengeluarkan sinyal analog sehingga perlu rangkaian terpisah untuk merubah dari analog ke digital/ADC. Anda mungkin penasaran mengapa banyak produsen yang kini beralih ke sensor CMOS, padahal secara hasil foto sensor CCD juga sudah memenuhi standar. Alasan utamanya menurut saya adalah soal kepraktisan, dimana sekeping sensor CMOS sudah mampu memberi keluaran data digital siap olah sehingga meniadakan biaya untuk membuat rangkaian ADC. Selain itu sensor CMOS juga punya kemampuan untuk diajak bekerja cepat yaitu sanggup mengambil banyak foto dalam waktu satu detik. Ini tentu menguntungkan bagi produsen yang ingin menjual fitur high speed burst. Faktor lain yang juga perlu dicatat adalah sensor CMOS lebih hemat energi sehingga pemakaian baterai lebih awet. Maka itu tak heran kini semakin banyak kamera digital DSLR maupun kamera saku yang akhirnya beralih ke sensor CMOS. Adapun soal kemampuan sensor CMOS dalam ISO tinggi pada dasarnya tak berbeda dengan sensor CCD dimana noise yang ditimbulkan juga linier dengan kenaikan ISO. Kalau ada klaim sensor CMOS lebih aman dari noise maka itu hanya kecerdikan produsen dalam mengatur noise reduction. Cara sensor menangkap’ warna Sensor gambar pada dasarnya merupakan perpaduan dari chip peka cahaya untuk mendapat informasi terang gelap dan filter warna untuk merekam warna seakurat mungkin. Di era fotografi film, pada sebuah roll film terdapat tiga lapis emulsi yang peka terhadap warna merah Red, hijau Green dan biru Blue. Di era digital, sensor kamera memiliki bermacam variasi desain teknologi filter warna tergantung produsennya dan harga sensornya. Cara kerja filter warna cukup simpel, misal seberkas cahaya polikromatik multi warna melalui filter merah, maka warna apapun selain warna merah tidak bisa lolos melewati filter itu. Dengan begitu sensor hanya akan menghasilkan warna merah saja. Untuk mewujudkan jutaan kombinasi warna seperti keadaan aslinya, cukup memakai tiga warna filter yaitu RGB sama seperti film dan pencampuran dari ketiga warna komplementer itu bisa menghasilkan aneka warna yang sangat banyak. Hal yang sama kita bisa jumpai juga di layar LCD seperti komputer atau ponsel yang tersusun dari piksel RGB. Bayer CFA Sesuai nama penemunya yaitu Bryce Bayer, seorang ilmuwan dari Kodak pertama kali memperkenalkan teknik ini di tahun 1970. Sensor dengan desain Bayer Color Filter Array CFA termasuk sensor paling banyak dipakai di kamera digital hingga saat ini. Keuntungan desain sensor Bayer adalah desain mosaik filter warna yang simpel cukup satu lapis, namun sudah mencakup tiga elemen warna dasar yaitu RGB lihat ilustrasi di atas. Kerugiannya adalah setiap satu piksel pada dasarnya hanya melihat’ satu warna, maka untuk bisa menampilkan warna yang sebenarnya perlu dilakukan teknik color sampling dengan perhitungan rumit berupa interpolasi demosaicing. Perhatikan ilustrasi mosaik piksel di bawah ini, ternyata filter warna hijau punya jumlah yang lebih banyak dibanding warna merah dan biru. Hal ini dibuat mengikuti sifat mata manusia yang lebih peka terhadap warna hijau. Kekurangan sensor Bayer yang paling disayangkan adalah hasil foto yang didapat dengan cara interpolasi tidak bisa menampilkan warna sebaik aslinya. Selain itu kerap terjadi moire pada saat sensor menangkap pola garis yang rapat seperti motif di kemeja atau pada bangunan. Cara termudah mengurangi moire adalah dengan memasang filter low pass yang bersifat anti aliasing, yang membuat ketajaman foto sedikit menurun. Sensor X Trans Sensor dengan nama X Trans dikembangkan secara ekslusif oleh Fujifilm, dan digunakan pada beberapa kamera kelas atas Fuji seperti X-E2 dan X-T1. Desain filter warna di sensor X Trans merupakan pengembangan dari desain Bayer yang punya kesamaan bahwa setiap piksel hanya bisa melihat satu warna. Bedanya, Fuji menata ulang susunan filter warna RGBnya. Bila pada desain Bayer kita menemui dua piksel hijau, satu merah dan satu biru pada grid 2×2, maka di sensor X Trans kita akan menemui pola grid 6×6 yang berulang. Nama X trans sepertinya diambil dari susunan piksel hijau dalam grid 6×6 yang membentuk huruf X seperti contoh di bawah ini. Fuji mengklaim beberapa keunggulan desain X Trans seperti tidak perlu filter low pass, karena desain pikselnya sudah aman dari moire terhindar dari false colour, karena setiap baris piksel punya semua elemen warna RGB tata letak filter warna yang agak acak memberi kesan grain layaknya film Sepintas kita bisa setuju kalau desain X Trans lebih baik daripada Bayer, namun ada beberapa hal yang masih jadi kendala dari desain X Trans ini, yaitu hampir tidak mungkin Fuji akan memberikan lisensi X Trans ke produsen kamera lain artinya hanya pemilik kamera Fuji tipe tertentu yang bisa menikmati sensor ini. Kendala lain adalah sulitnya dukungan aplikasi editing untuk bisa membaca file RAW dari sensor X Trans ini. Sensor Foveon X3 Foveon sementara ini juga ekslusif dikembangakan untuk kamera Sigma tipe tertentu. Dibanding sensor lain yang cuma punya satu lapis filter warna, sensor Foveon punya tiga lapis filter warna yaitu lapisan merah, hijau dan biru. Desain ini persis sama dengan desain emulsi warna pada roll film foto. Hasil foto dari sensor Foveon memberikan warna yang akurat dan cenderung vibrant, bahasa gampangnya seindah warna aslinya. Hal yang wajar karena setiap photo detector di sensor Foveon memang menerima informasi warna yang utuh dan tidak diperlukan lagi proses menebak’ warna seperti sensor Bayer atau X-Trans. Yang jadi polemik dalam sensor Foveon adalah jumlah piksel aktual. Misalnya ada tiga lapis filter warna yang masing-masing berjumlah 3,4 juta piksel, maka Foveon menyebut sensornya adalah sensor 10,2 MP karena didapat dari 3 lapis filter 3,4 MP. Ini agak rancu karena saat foto yang dihasilkan dari sensor Foveon kita lihat resolusi gambarn efektifnya memang hanya 2268 x 1512 piksel atau setara dengan 3,4 MP originalnya dan yang terbaru 15 MP. Meski demikian, karena kualitas di pixel levelnya sangat tinggi, maka saat diadu dalam cetak dengan foto buatan sensor Bayer, resolusinya seperti 2X yang tertera di file foto. Misalnya MP setara MP dan 15 MP setara 30 MP. tambahan oleh Enche Tjin Salah satu kelemahan dari sensor Foveon adalah noise yang sudah terasa mengganggu walau di ISO menengah seperti ISO 800. Tapi seiring peningkatan teknologi pengurang noise maka hal ini tidak akan jadi masalah serius di masa mendatang. Tambahan oleh Enche Tjin Kelebihan sensor Foveon adalah membuat foto dengan ketajaman dan micro-kontras yang sangat bagus sehingga detail foto lebih jelas dan tajam. Hal ini disebabkan karena tidak adanya filter AA Anti-Alias yang biasanya terdapat di sensor tipe Bayer. Juga tidak ada moire and chroma noise. Sehingga hasil dari sensor Foveon ini lebih murni daripada sensor lain. Kelemahan sensor ini yaitu diperlukan tenaga prosesor yang sangat besar dan relatif lama untuk memproses fotonya, selain itu juga menguras tenaga baterai. Kamera jadi lebih cepat panas. Kamera yang mengunakan Foveon ini sampai sekarang hanya Sigma, yaitu seri Sigma DP compact dan Sigma SD1 DSLR. Kesimpulan Teknologi sensor gambar masih terus berkembang, dari yang paling mudah dilihat seperti kenaikan resolusi megapiksel hingga teknologi lain yang bisa membuat hasil foto meningkat siginifkan. Yang saya cermati adalah era Bayer sudah terlampau usang, dengan teknik interpolasi yang banyak keterbatasan, perlu segera digantikan dengan metoda lain. Sensor X Trans buatan Fuji membawa angin segar dengan peningkatan kualitas foto dibanding sensor Bayer khususnya dalam hal ketajaman dan kekayaan warna, namun sayangnya tidak belum? bisa diadopsi di kamera lain. Sensor Foveon pun demikian, walau secara teknik paling menyerupai emulsi film yang artinya bakal memberi hasil foto yang paling baik justru dipakai di kamera yang jarang dijumpai seperti kamera Sigma. Sensor kamera yang paling ideal itu harus cukup banyak piksel detail, punya dynamic range lebih lebar dari sensor yang ada saat ini, punya filter warna yang lebih baik dari Bayer CFA, dan efisien harga, performa, kinerja ISO tinggi dsb. Kira-kira kapan ya sensor ideal ini bisa terwujud? About the author Erwin Mulyadi, penulis dan pengajar yang hobi fotografi, videografi dan travelling. Sempat berkarir cukup lama sebagai Broadcast Network TV engineer, kini Erwin bergabung menjadi instruktur tetap untuk kursus dan tour yang dikelola oleh infofotografi. Temui dan ikuti Erwin di LinkedIn dan instagram.
mobileaudio , TV , and gaming devices mobile phones , notebooks , and tablets medical systems , automotive , and transport > 100 M units < 1 M < 1 M < M < M > ts > ts > 100 M units ~ 1 B units ~ 1 B units Figure 1. Low to high volume CMOS image sensor applications, according to a report prepared by Yole Dev eloppment. 2. DIVERSITY OF CMOS SENSORS
Este artigo foi útil? Considere fazer uma contribuição Ouça este artigo Para saber um pouco mais sobre como o sensor digital funciona, é importante entender sobre o modelo que prevalece na fotografia digital atualmente, ou seja, o CMOS. Outra opção seria o CCD, que hojé é mais empregado em câmeras compactas, devido à sua menor dimensão, mas não é sobre ele que trataremos CMOS de uma câmera fotográfica. Foto Valerio Pardi / sensor, ou chip, produz a foto através da captação de descargar elétricas. Este tipo de chip possui milhões de transdutores fotossensíveis photosites. A função destes transdutores é converter em carga elétrica a energia luminosa, pois desta forma ela poderá ser lida e gravada em valores numéricos, gerando a imagem sensor possui uma superfície fotossensível, cujo tamanho é o fator que determinará a qualidade da imagem que será produzida. Trocando em miúdos, quanto maior for o sensor, mais qualidade de imagem ele será capaz de produzir. Nas câmeras DSLR podemos identificar quatro tamanhos full-frame, APC-H, APS-C e superfície fotossensível é constituída por pixels, que recebem, no momento da exposição, uma carga de fótons. Quanto maior for a superfície do pixel, mais fótons ele será capaz de captar, e melhor será a qualidade da imagem. Outra característica importante é o espaçamento entre os pixels, quanto menor for esta medida, melhor qualidade de outros agentes podem otimizar esta captação, como as micro lentes, que ajudam a convergir uma quantidade maior de fótons sobre o pixel; ou o filtro de cores primárias que direciona as cores para que um pixel receba apenas um tipo de luz vermelha, azul ou fabricantes de sensores vem melhorando sua qualidade frequentemente, e tornando-os mais acessíveis aos diversos consumidores, mas o que ainda determina a qualidade da imagem ainda é o tamanho do originalmente publicado em artigo foi útil? Considere fazer uma contribuição
Kecerdasanbuatan atau artificial intelligence (AI) mungkin sudah tidak asing oleh kita. Melalui puluhan judul film bergenre fiksi ilmiah, terlihat
Pegue um atalho Tamanho do sensor em polegadas de tubos analógicos a chips CMOS Área efetiva do sensor tamanho é documento Máscara Bayer e outras técnicas enxergando em cores Quad Bayer e Tetracell Sensor RYYB o mesmo em amarelo Software de câmera algoritmo é tudo Foco automático PDAF, 2x2 OCL e mais Atenção a tendência entre os celulares não é apenas para incluir mais sensores, mas também para adotar componentes maiores / © NextPit Tamanho do sensor em polegadas de tubos analógicos a chips CMOS Para começar, um pouco de história nas especificações das câmeras de celulares, o tamanho do sensor é sempre citado em uma medida exótica na notação 1/xyz polegada, por exemplo 1/1,72 polegada ou 1/2 polegada. Infelizmente, este tamanho não corresponde em nada ao tamanho real do sensor no celular. Vejamos a ficha técnica do IMX586 meia polegada deste sensor de 1/2 polegada corresponderia neste caso a 1,27 centímetro. Mas o tamanho real do Sony IMX586 não tem nada a ver com isso. Se multiplicarmos o tamanho dos pixels de 0,8 mícron pela resolução horizontal de pontos, obtemos apenas 6,4 milímetros, que é apenas metade. Se primeiro usarmos a horizontal e depois o bom e velho Pitágoras para a diagonal, obtemos 8,0 milímetros. Isso não é nem de perto o bastante. E aqui está o ponto crucial as especificações em polegadas foram adotadas há cerca de meio século, quando as câmeras de vídeo ainda dependiam de tubos de vácuo como conversores de imagem. Os departamentos de marketing mantêm a relação aproximada entre a área sensível à luz e diâmetro do tubo até hoje. E por isso um chip CMOS com uma diagonal de 0,31 polegadas é hoje em dia chamado de sensor de 1/2 polegada. "Na minha época, meu amigo" as designações em polegadas dos sensores de imagem datam de tempos como estes. Na foto Ionoscópio inventor Vladimir K. Zworykin ca. 1954 com alguns tubos conversores de imagem / © Domínio Público Se você quiser saber o tamanho real de um sensor de imagem, dê uma olhada na folha de dados do fabricante ou na página detalhada da Wikipedia sobre os tamanhos dos sensores de imagem. Ou você pode fazer como no exemplo acima e multiplicar o tamanho do pixel pela resolução horizontal ou vertical. Área do sensor quando tamanho é documento Por que o tamanho do sensor é tão importante? Imagine a luz caindo através da lente sobre o sensor como a chuva caindo do céu. Agora pense que você tem um décimo de segundo para estimar a quantidade de água que está caindo atualmente. Isto será relativamente difícil com um copo de shot, pois algumas gotas podem cair no copo em um décimo de segundo se chover muito, ou nenhuma gota se chover pouco ou se tiver um pouco de azar. Em qualquer caso, sua estimativa será muito imprecisa. Agora imagine que você tem uma piscina para a mesma tarefa. Com ela, você pode facilmente pegar algumas centenas ou milhares de gotas da chuva e pode estimar com precisão a quantidade de chuva com base na área de superfície. No caso dos sensores de imagem e a luz acontece o mesmo que com um copo de shot ou uma piscina, e a medição da chuva. Quanto mais escuro, menos fótons os conversores de luz capturam — e menos preciso é o resultado da medição. Essas imprecisões se manifestam posteriormente em erros como ruído de imagem, cores imprecisas, etc. Este gráfico mostra uma comparação de alguns dos formatos de sensores atualmente utilizados em celulares / © NextPit Tudo bem que em termos absolutos a diferença entre sensores de imagem nos celulares não é tão grande quanto a diferença entre um copo e uma piscina. Mas o já mencionado Sony IMX586 na câmera telefoto do Samsung Galaxy S20 Ultra é cerca de quatro vezes maior em área do que o sensor de 1/4,4 polegada na câmera telefoto do Xiaomi Mi Note 10. A sede por números cada vez maiores nos materiais de divulgação dos celulares é praticamente o mesmo que usar como velocidade máxima de um carro o valor irreal alcançado em queda livre / © Volkswagen, Montagem NextPit Matriz Bayer e outras técnicas para enxergar colorido Voltando para nossa comparação acima com a água da chuva, se colocássemos vezes baldes em um campo aberto, poderíamos determinar a quantidade de chuva caindo com uma "resolução" de 12 megapixels e registrar algum tipo de informação da saturação de água da nuvem passando por cima da região. Entretanto, se um sensor de imagem com 12 megapixels captasse a quantidade de luz com suas por armadilhas de fótons, a foto resultante seria preto e branco — porque medimos apenas a quantidade absoluta de luz. Não podemos distinguir as cores nesse exemplo, assim como um balde não pode distinguir o tamanho das gotas de chuva que caem sobre ele. Então como transformar a foto em preto-e-branco em uma foto colorida? O truque é aplicar uma máscara colorida sobre o sensor, a chamada matriz Bayer ou filtro Bayer. Isto garante que somente a luz vermelha, azul ou verde atinja os pixels. Com a clássica matriz Bayer com layout RGGB, um sensor de 12 megapixels tem então seis milhões de pixels verdes e três milhões de pixels vermelhos e azuis cada um. O olho humano pode distinguir melhor os tons verdes. Assim, os sensores de imagem das câmeras também são melhor posicionados aqui e têm o dobro de pixels verdes do que os pixels azuis ou vermelhos. À direita está uma matriz RYB - aqui os pixels verdes foram trocados por amarelos / © NextPit A fim de gerar uma imagem com doze milhões de pixels RGB a partir destes dados, o processamento da imagem normalmente começa com o desmosaico dos pixels verdes ou interpolação. Usando os pixels vermelhos e azuis ao redor, o algoritmo calcula então — de forma muito simplificada — um valor RGB para cada pixel. Na prática, os algoritmos de interpolação são muito mais inteligentes, por exemplo, para evitar "franjas" coloridas nas bordas dos objetos. O mesmo processamento é aplicado com os pixels vermelhos e azuis, e uma foto colorida vai então para a memória interna do seu celular. Quad Bayer e Tetracell Sejam 48, 64 ou 108 megapixels a maioria dos atuais sensores de altíssima resolução em celulares tem uma coisa em comum enquanto o sensor propriamente dito tem 108 milhões de "baldes de água" ou sensores de luz, o filtro Bayer acima dele tem uma resolução quatro vezes menor. Portanto, há quatro pixels sob cada filtro de cor. Sejam sensores Tetracell da Samsung ou Quad Bayer de outras fornecedoras em cada vez mais sensores de imagem, quatro pixels compartilham um filtro de cor / © NextPit É claro, isso é tudo o que os departamentos de marketing mais gostam para usar nas fichas técnicas. Um sensor de 48 megapixels! 108 megapixels! Três sensores de 64 MP! E quando está escuro, os minúsculos pixels podem ser combinados em superpixels maiores para oferecer fotos noturnas melhores. Paradoxalmente, porém, muitos celulares mais baratos não oferecem nem mesmo a opção de tirar fotos com 48 megapixels — ou até mesmo oferecem uma qualidade de imagem inferior nesse modo em comparação com o modo de 12 megapixels. Em todos os casos que conheço, os celulares também são tão mais lentos ao tirar fotos com resolução máxima, que o aumento moderado na qualidade não vale a pena — especialmente porque 12, 16 ou 27 megapixels são suficientes para o uso diário e não enchem a memória tão rapidamente. A mensagem de marketing de dezenas de megapixels pode ser ignorada. Mas na prática, os sensores de alta resolução costumam também ser maiores — e a qualidade da imagem se beneficia notavelmente disso. O sensor SuperSpectrum da Huawei trocando o verde e amarelo Há ainda algumas técnicas inspiradas na matriz Bayer. A Huawei, como exemplo mais destacado, conta com a chamada matriz RYYB para alguns sensores ver gráfico acima, na qual o espectro de absorção dos pixels verdes é deslocado para o amarelo. Isto tem a vantagem — pelo menos no papel — de que mais luz é absorvida e mais fótons chegam ao sensor no escuro. Os diagramas de eficiência quântica mostram quão sensivelmente diferentes sensores reagem à luz de diferentes comprimentos de onda. No caso do sensor RYYB ou RCCB à direita, o intervalo sob a curva de absorção verde ou amarela, ou seja, a sensibilidade à luz, é significativamente maior. Por outro lado, os pixels amarelos respondem mais à "faixa de frequência vermelha", o que torna mais difícil o desmosaico / © Sociedade de Ciência e Tecnologia de Imagem Por outro lado, os comprimentos de onda medidos pelo sensor não estão mais tão uniformemente distribuídos no espectro e tão claramente separados uns dos outros como em um sensor RGGB — caso da linha verde interrompendo sua queda no espectro de onda vermelha no gráfico acima à direita. A fim de manter uma reprodução de cor precisa, aumentam as exigências sobre os algoritmos, que devem posteriormente interpolar os valores de cor RGB. É impossível prever qual abordagem produzirá as melhores fotos. Neste caso, só os testes práticos e laboratoriais que provam que uma ou outra tecnologia está correta. Leia também Teste cego de câmeras 2021 o NextPit escolhe a melhor câmera de celular! Software da câmera o algoritmo faz a música Finalmente, gostaria de dizer algumas palavras sobre os algoritmos que acabei de mencionar. Especialmente na era da fotografia computacional, o conceito de fotografia está se tornando difuso. Uma imagem formada por doze fotos individuais ainda é realmente uma fotografia no sentido original? Uma coisa é certa a influência dos algoritmos de processamento de imagem é muito maior do que um aumento discreto da área do sensor. Sim, uma diferença de duas vezes a área faz uma grande diferença. Mas um bom algoritmo também compensa muita coisa. A líder global do mercado de sensores, a Sony, é um bom exemplo disso. Embora a maioria dos sensores de imagem pelo menos tecnologicamente venha do Japão, os smartphones Xperia costumam ficar atrás da concorrência em termos de qualidade de imagem. O Japão pode fazer hardware, mas quando se trata de software, os outros estão mais avançados. Duas fotos do Samsung Galaxy S10. À esquerda, foi usada a câmera do Google, à direita, o aplicativo da própria Samsung. O modo HDR do Google é superior ao da Samsung. Não é de admirar que muitas pessoas baixem a câmera do Google / © NextPit E aqui vai outra dica sobre a sensibilidade ISO, que também merece seu próprio artigo por favor, nunca fique impressionado com os números ISO, pois os sensores de imagem em quase todos os casos* têm uma única sensibilidade ISO nativa que é muito raramente encontrada nas fichas técnicas. Os valores ISO que o fotógrafo ou o sistema automático da câmera definem durante o clique real são mais como uma compensação — ou seja, um "controle de brilho". O "comprimento" da escala para este controle de brilho pode ser definido livremente, portanto escrever um valor como "ISO nas especificações faz tanto sentido quanto escrevê-lo na ficha técnica de um VW Golf... Bom, vamos deixar as coisas assim. * Existem na verdade alguns sensores "dual ISO" com duas sensibilidades nativas no mercado de câmeras, por exemplo o Sony IMX689 no Oppo Find X2 Pro, pelo menos é isso que o Oppo diz. Caso contrário, é mais provável que você encontre o que está procurando em câmeras profissionais como a BlackMagic PCC 6K. Autofoco PDAF, 2x2 OCL e outras técnicas Finalmente, um pequeno ponto que está diretamente relacionado ao sensor de imagem o tópico do foco automático. No passado, os celulares determinavam o foco correto usando o foco automático por contraste. Esta é uma detecção lenta e computacionalmente intensiva. A maioria dos sensores de imagem atuais usa o chamado "autofoco por comparação de fases", também conhecido como PDAF phase detect autofocus. Neste caso, são instalados pixels especiais de autofoco no sensor que são divididos em duas metades, comparam as fases da luz incidente e podem usá-los para calcular a distância até o objeto. A desvantagem desta tecnologia é que o sensor de imagem é "cego" nestes pontos — e dependendo do sensor, estes pixels cegos de foco podem afetar até três por cento da superfície do componente. O Oppo Find X2 Pro ajusta o foco incrivelmente rápido no modo de vídeo graças ao sensor OCL 2x2 / © NextPit Apenas um lembrete quanto menor a área, menos luz/água e menor a qualidade de imagem. Além disso, os algoritmos têm que retocar estas imperfeições como seu cérebro faz com o ponto cego. No entanto, há uma abordagem mais elegante que não inutiliza pixels no sensor. Neste caso, as microlentes que já estão presentes no sensor são distribuídas em vários pixels. A Sony, por exemplo, chama isso de 2x2 OCL ou 2x1 OCL, dependendo se as microlentes combinam quatro ou dois pixels. Quatro pixels sob um filtro colorido sob uma microlente a tecnologia OCL 2x2 da Sony transforma todos os pixels em sensores cruzados para foco automático / © Sony Em breve dedicaremos um artigo separado e mais detalhado ao foco automático. O que você procura em uma câmera quando compra um novo celular? E sobre quais tópicos em torno da fotografia com celulares você gostaria de ler a respeito? Aguardo com expectativa seus comentários! Mais artigos sobre câmeras de celulares Guia fotográfico para smartphone para que serve a abertura Câmera do celular sem foco? Saiba como resolver esse problema
Keywords o set pixel aperture width; monochrome; CMOS image sensor; depth extraction 1. Introduction An image is an important method by which visual information is shared in modern society. However, it is di cult to obtain stereoscopic information using images reproduced by general image sensors.
A CMOS sensor is an electronic chip that converts photons to electrons for digital processing. CMOS complementary metal oxide semiconductor sensors are used to create images in digital cameras, digital video cameras and digital CCTV cameras. CMOS can also be found in astronomical telescopes, scanners and barcode readers. The optical technology is used in machine vision for robots, in optical character recognition OCR, in the processing of satellite photographs and in the enhancement of RADAR images, especially for meteorology. Like other semiconductor technologies, CMOS chips are produced by photolithography. The chips feature an array of minute light-capturing cells that pick up the photons at their various wavelengths as focused by a lens, translating them into electrons, much like a tiny solar cell. The CMOS cells are surrounded by transistors, which amplify the charge of the electrons gathered by the cells, sending them across the chip by tiny wires in the chip’s circuitry. A digital-to-analog converter at one corner of the device reads the electrons and translates the differing charges of individual cells into pixels of various colors. CMOS’ low manufacturing cost makes it possible to create low-cost consumer devices. Advances in CMOS technology have made it possible for them to approach their competitor in high-end digital cameras, charge-coupled devices CCD. In contrast to CMOS, CCD cells are not surrounded by transistors and must actively use power to gather light. This makes them less power-efficient but also enables the benefits of a lower-noise image and greater light sensitivity. This was last updated in February 2018 Continue Reading About CMOS sensor Super Sensitive Sensor Sees What You Can't What is the Exmor R™ CMOS Sensor and how does it work? Crack CMOS' memory space What is the difference between CCD and CMOS image sensors in a digital camera?
Pemrosesangambar Realme pada Realme 7 Pro menunjukkan peningkatan yang nyata. Realme 7 Pro menggunakan sensor Sony IMX682 yang dipasangkan dengan sensor ultrawide 8MP, kamera makro 2MP dan depth sensor 2MP.Smartphone ini memiliki fitur Super Fast Charging 65W, layar dengan panel AMOLED dan didukung oleh chipset octa-core
In any digital camera, the sensor is the most important piece of equipment. Without it, we wouldn’t be able to capture any images with our digital cameras. In fact, if you search around the internet, you may notice how many people agree that the sensor is more important than for good reason. That’s because, if you look at how a smartphone camera works, the sensor is the most vital part of the whole what exactly is the sensor? How does it work? Does the size impact picture at all? In this article, I will answer these and other questions you may have regarding the smartphone camera you continue, I recommend you read my article on how smartphone cameras work just so that you have a bit of context around what happens in a phone’s camera before the light that enters the camera reaches the sensor. It might help you understand this article a bit this article will not cover mobile camera depth sensors also known as depth cameras. For that, you can read this article or learn about smartphone ToF cameras let’s jump right is the sensor?A smartphone camera image sensor is a device that takes the light that enters the camera through the lens and produces a digital image from it. The surface of a sensor contains millions of photosites also known as pixels which are responsible for capturing the light. The total number of these light-capturing elements is known as a sensor is similar to a film frame. Back in the early days of photography before digital cameras, people used to take photos on a roll of celluloid film. This film was coated with a special chemical that produced an image when it was exposed to digital photography took over, the old film system was done away with and replaced with an electronic device– the image sensor. When the camera shutter is activated, the sensor is exposed to light and captures it in its photosites until the shutter is duration for which the shutter remains activated is known as the shutter speed. The longer the shutter is activated, the more light the camera’s sensor can receive. This means your photos can come out looking bright even in low light ideal but there is a downside to messing around with the shutter speed you need to be aware of. Ignoring it can lead to blurry a side note When shooting at slow shutter speeds, it’s very important that you keep your phone steady by using a camera support system such as a tripod. Personally, the Joby range of tripods for mobile phones is one of my favourites because of their small size and versatility. Definitely worth checking default, smartphone sensors do not see colour. Cameras that produce colour images have a colour filter array placed over the photosites in order to reproduce the colour information in the final digital image. If you look closely at the image above, you will see the red, green, and blue of the play a big role in how a photo turns out in terms of size and quality. A big sensor can fit more and bigger photosites than a small one. That means a smartphone with a big sensor can produce photos of a quality good enough to print and of sensorsThere are two types of sensors that can be found in digital cameras the CCD and CMOS sensors. They’re both responsible for converting light into electric signals but they work CCD Charge-Coupled Device sensor is the more traditional sensor. It’s an analogue device that captures an image in one shot and converts it into one sequence of voltage. A CCD sensor performs well in low light and doesn’t suffer as much from digital noise as a CMOS because the CCD sensor is expensive and uses a lot of power, it is not as popular in smartphone cameras as the CMOS Complementary Metal-Oxide Semiconductor uses less power than CCD, which makes it ideal for mobile devices. This type of sensor doesn’t capture an entire image in a single instance but rather captures images in a scanning type of downside to this is an issue known as the rolling shutter effect, where the image gets skewed when the sensor tries to interpret a moving object. This is an issue that’s especially most problematic when recording almost universally use CMOS sensors. Very few use CCD these does the sensor work?The sensor as a device is made up of millions of light-catching cavities known as photosites sometimes referred to as pixels, which can be confusing. When the shutter is activated, these photosites capture light for as long as the sensor remains light photons that are captured by each photosite are interpreted as an electrical signal. The strength of this signal will vary depending on how many photons were captured by the best way to understand this to imagine each photosite/pixel as a bucket catching rainwater. The rain represents the light that enters the camera and is captured by the photosites. If the bucket is filled all the way up to the top, the camera’s processor determines that it’s a white pixel. If the bucket is empty, it’s a black pixel. Anything else in between will be a varied intensity of white, and grey? What about colour? This is where a colour filter array comes into colour filter arrayTo capture images in colour, something known as a colour filter array CFA is needed. There are different types of CFAs but the most common is the Bayer Filter Array. It consists of alternating rows of the three primary colours red, green, and the array is made up of green filters, while blue and red each take up a quarter each. The reason for this is because our eyes are naturally more sensitive to green light. So having more green filters on the CFA will produce images that look more natural to our colour filter covers one photosite and captures light that corresponds with its colour. In other words, the red filter allows red light to be captured, the green filter captures green light and the blue filter allows blue light in. Using the Bayer filter, digital cameras can only capture one primary colour in each photosite. The others are begs the question if a sensor only receives red, green, and blue colour information, how do digital images pixels have colour information such as yellow, purple, orange, magenta, or any other colour? This is done through an interpolation process known as the Bayer filter is an RGB mosaic, every pixel is missing colour information from the other two colours of the RGB colour combo. Demosaicing happens when the camera’s processor calculates the colour values missing in each pixel by calculating the colour values of neighbouring better understand this process, check out How A Smartphone Camera Processes An Image. This will give you better insight into how a mobile camera’s ISP image signal processor creates the final image you can view and camera sensor sizeThe size of the sensor is usually expressed in inches as a fraction such as 1/ or 1/3”. This might seem to indicate the diagonal measurement of the sensor but that is not the case, which can be a whole history behind why this method of measurement. It’s quite involved but it pretty much boils down to manufacturers trying to veer consumer attention away from how small the sensors actually were. If you want to do a deep dive into it, I found this post really phones have different size sensors but smartphone camera sensors are notoriously small. At some point, the average sensor size on popular high-end smartphone cameras from the likes of Apple and Samsung was 1/ But recent smartphone camera trends show the size going up, especially in phones with high megapixel phone that holds the record of having the largest sensor to date is the 2014 Panasonic Lumix CM1 that had a 1-inch sensor. In 2019, the biggest sensor was 1/ found on the Huawei P30 Pro and Mate 30 Pro. In 2020, the Huawei P40 Pro+ has the largest sensor on the market at 1/ with the biggest sensors of all timePhone ModelSensor sizePixel SizeMegapixelsRelease date1Panasonic Lumix CM11” PureView 8081/ P40 Pro +1/ *50MP20204Samsung Galaxy S20 Ultra1/ *108MP20205Xiaomi Mi 10 Pro1/ *108MP20206Motorola Edge+1/ *108MP2020 * Pixel size after pixel binningHow big is it compared to full-frame DSLRSmartphone camera sensors have definitely increased in size over the years, and indeed have reached some amazing heights but they still pale in comparison to full-frame sensors the likes of which are found in DSLR image sensors are 35mm in diameter, the same size as old school celluloid film. Hence the name full-frame. There are many smaller frame sensors known as crop sensors, and smartphone sensors are found at the tail end of the full-frame 35mm sensor measures 864mm2 while a 1/ smartphone sensor only measures 43mm2. That means the once-praised Huawei P30 Pro’s sensor, for example, is 20 times smaller than a full-frame DSLR sensor. That’s a lot!How does the size of a sensor impact photos?The size of the sensor definitely has a huge impact on the quality of the images that a camera can produce. It’s one of the important factors that contribute to what makes a mobile phone photo look the bigger the sensor, the bigger the photosites. Big photosites mean the sensor gets to capture more light. This is especially useful in situations where the lighting is poor. You’re less likely to have issues with digital noise depending on how big the photosites a big sensor can pack more megapixels. The more megapixels a smartphone camera has, the higher the resolution of its images will be. If you’re into printing large prints of your mobile photos, then this is a you can’t have it both ways. You can’t pack a lot of large photosites on a sensor, not on smartphone camera sensors at least. Due to the physical size of the sensor being fixed, the more pixels a camera has, the smaller they poses a challenge on mobile cameras. Because they’re so small in size, the photosites on a smartphone camera sensor are very tiny. This puts smartphone cameras at a disadvantage when it comes to how much light their sensors can photosites don’t perform well when there isn’t enough lighting. You’d have to increase the camera’s ISO by quite a bit to get the brightness of images captured on a sensor with small photosites to match that of an image from a sensor with larger looking to buy a new phone, a lot of people simply go for the phone with the most megapixel camera and believe it’s the best. And, honestly, there’s nothing wrong with even though having lots of megapixels can give you prints with fine detail, don’t fall for the smartphone companies’ marketing hype and believe more megapixels means a better quality camera. In reality, the truth about megapixels is something totally you’re about to buy a new smartphone and the main camera is your biggest priority, just be sure to also lookout for a phone that has a camera with a big sensor.
Sensorformat. With DXOMARK you can display the cameras with three different views - Grid, List or Graph in order for you to have the best solution to compare the filtered results. Choose the cameras you want to compare from the results below. Then in the selection box, you can check up to three cameras at a time to compare their data.
Skip to content Anda tentu tahu seperti apa hasil foto yang dibuat oleh sebuah kamera dari hand phone. Gambar yang dihasilkan cenderung berkualitas rendah, tidak peka cahaya dan banyak noise. Memang kamera pada hand phone memang bukan untuk menggantikan kamera digital, setidaknya sampai saat ini. Sebenarnya mengingat sensor yang digunakan adalah sensor CMOS yang secara teori sudah cukup memadai, seharusnya kamera pada hand phone dapat memberi hasil yang lebih baik dibandingkan yang ada saat ini. Kendala yang ada adalah untuk memberi hasil foto yang baik, ukuran sensor CMOS harus relatif besar dan hal ini menjadi masalah tersendiri bagi produsen hand phone karena terbatasnya tempat yang ada. Namun kini harapan baru di dunia fotografi selular telah muncul dengan terobosan Kodak dalam mendesain ulang sensor CMOS untuk hand phone yang meski berukuran kecil namun berkinerja tinggi. Kodak baru-baru ini berhasil membuat sensor CMOS beresolusi 5 MP dengan ukuran piksel yang hanya mikron, dirancang khusus untuk kamera pada hand phone. Dengan sensor sekecil ini dan resolusi sebesar 5 MP mungkin akan mendatangkan keraguan seperti apa hasil foto yang dihasilkannya, dan seberapa parah noisenya. Namun sensor baru yang diberi nama Kodak KAC-05020 ini berani menantang sensor yang lebih besar ukuran piksel sekitar mikron dalam hal kualitas foto terutama untuk urusan fotografi rendah cahaya low light, berkat teknologi TRUESENSE CMOS pixel. Kira-kira beginilah cara kerjanya bila terlalu teoritis anda bisa lewati alinea ini dan langsung ke alinea selanjutnya Sensor adalah perangkat analog yang mengubah gelombang cahaya yang mengenai permukaan sensor menjadi tegangan. Semakin tinggi intensitas cahaya yang mengenai sensor maka semakin tinggi sinyal output dari sensor. Secara atomik, saat permukaan sensor terkena cahaya, silikon yang menjadi bahan penyusun sensor akan mengeluarkan elektron yang menjadi acuan nilai besaran tegangan. Tegangan output dari sensor inilah yang akan diteruskan ke rangkaian Analog to Digital Converter. Sebaliknya saat kondisi cahaya rendah, sensor akan memberikan nilai outputnya yang juga rendah. Hal ini menyebabkan hasil foto akan gelap dan biasanya hanya bisa diatasi dengan meningkatkan sensitivitas sensor ISO sehingga nilai output dan juga noise yang ada juga akan naik. Kodak mendesain sensor CMOS baru ini dengan cara membalik prinsip kerja sensor CMOS konvensional, prinsipnya dengan memanfaatkan ketiadaan cahaya untuk mendeteksi sinyal. Secara atomik, sensor CMOS baru ini memiliki silikon dengan kutub polarity yang terbalik sehingga mampu mengukur lubang hole yang tertinggal saat elektron tersebut dikeluarkan. Pada kondisi cahaya rendah hanya sedikit elektron yang dikeluarkan, namun sebaliknya akan banyak tersedia lubang yang bisa dihitung dan dijadikan referensi nilai output. Hukum Fisika atom Setiap perpindahan elektron pada sebuah atom akan meninggalkan sebuah lubang pada atom tersebut. Prinsip sederhana ini ternyata berhasil mengatasi masalah yang umum dialami sensor CMOS dalam kondisi cahaya rendah, bahkan hasil foto yang dibuat sensor CMOS ini mengalahkan hasil sensor CCD yang dimiliki kamera digital. Wow! Untuk urusan kepekaan cahaya, sensor baru ini juga dilengkapi dengan filter baru bernama Kodak TRUESENSE Color Filter Pattern. Filter ini melengkapi piksel RGB yang sudah ada dengan sebuah piksel panchromatic tidak berwarna yang khusus mengumpulkan informasi cahaya. Piksel ini sensitif terhadap seluruh spektrum cahaya tampak sehingga sensitivitasnya lebih tinggi hingga 4x dibanding sensitivitas sensor RGB biasa. Dengan begitu maka kinerja sensor saat cahaya rendah dapat ditingkatkan. Dengan penemuan baru ini Kodak mengklaim sensor ini mampu memiliki sensitivitas hingga ISO 3200, juga akan mampu memberikan resolusi 720p untuk video dengan 30 fps, dan dengan dukungan Texas Instruments OMAP dimungkinkan mencapai performa tinggi layaknya kamera digital yaitu digital image stabilizer, auto fokus yang cepat, face detection dan pengurang mata merah red-eye reduction. Dengan kemampuan seperti ini, di masa mendatang hand phone yang kita miliki juga sudah dapat menjadi kamera digital sesungguhnya yang dapat diandalkan untuk memotret dalam segala kondisi. Kita tunggu saja implementasi dari sensor Kodak ini pada kamera masa depan. Erwin M. Saya suka mengikuti perkembangan teknologi digital, senang jalan-jalan, memotret, menulis dan minum kopi. Pernah bekerja sebagai engineer di industri TV broadcasting, namun kini saya lebih banyak aktif di bidang fotografi khususnya mengajar kursus dan tur fotografi bersama View all posts by Erwin M. Post navigation
APKfiles are meant for smartphones for example android phones. Nikon's backside-illuminated CMOS sensor technology increases the flow of light to the sensor's surface, thereby yielding improved image quality and reduced noise. Next Review Nikon COOLPIX S9200 16 MP CMOS Digital Camera with 18x Zoom NIKKOR ED Glass Lens and Full HD 1080p
Capa Byte CMOS é o tipo de sensor de imagem mais comum em eletrônicos de consumo, como câmeras DSLR, smartphones e webcams; entenda funcionamento e vantagens O sensor de imagem CMOS semicondutor de óxido metálico complementar está presente em câmeras para capturar a luz e convertê-la em imagem, usando fotodetectores e transistores. Sensor CMOS Foto Zach Dischner / Flickr / Tecnoblog Índice Histórico e aplicaçõesO sensor CMOS foi criado pelo cientista e engenheiro Peter J. W. Noble em 1968. Nas décadas de 1970 e 80, esta tecnologia foi usada nas indústrias aeroespacial e automobilística. Os sensores CMOS se tornaram avançados o suficiente para câmeras digitais a partir da década de 90; e ultrapassaram os sensores CCD em vendas em 2004. Câmeras digitais, câmeras DSLR, câmeras mirrorless, webcams e celulares usam sensores mercado de sensores de imagem CMOS valia US$ 16,82 bilhões em 2021, e deve aumentar para US$ 23 bilhões em 2028, de acordo com a consultoria Brandessence. O crescimento deve ser puxado em grande parte pela maior demanda por Sony é líder de vendas em sensores CMOS para câmeras; o setor também é composto por Samsung, OmniVision, Canon, Fujifilm, NikkoIA SAS, Panasonic e outras funciona um sensor de imagem CMOSO sensor CMOS transforma a luz em um sinal elétrico, que é amplificado dentro do pixel e gera o sinal digital representando a quatro componentes principais de um sensor CMOS, de acordo com a fabricante Tokyo Electron microlente direciona a luz para o fotodiodo; filtro de cor deixa passar somente uma cor da luz; pixel recebe a luz, transformando-a em um sinal elétrico; conversor analógico-digital transforma o sinal elétrico em um sinal digital, isto é, uma sequência de zeros e uns. Como funciona o sensor CMOS de uma câmera Foto Vitor Pádua / Tecnoblog / Tecnoblog O filtro de cor recebe a luz vinda da lente, e só permite passar determinados padrões de cores, como o RGB vermelho, azul ou verde. A matriz Bayer é o filtro RGB mais comum, reproduzindo a maior parte das cores visíveis ao olho um sensor CMOS, cada pixel é composto por um fotodetector, para capturar a luz; e por um ou mais transistores ativos. Esses transistores amplificam o sinal elétrico e o repassam para o conversor mais megapixels, maior a resolução da imagem. O tamanho do sensor também afeta a profundidade de é um processo de fabricação de circuitos. O sensor CMOS é um sensor de pixel ativo APS composto por transistores do tipo MOSFET transistor de efeito de campo metal-óxido-semicondutor.Vantagens e desvantagens do CMOSOs sensores CMOS têm como principal vantagem o custo menor de fabricação. No entanto, uma desvantagem é a maior chance de ruído e distorções na modo resumido, temos Tamanho e custo menores o sensor CMOS vem embutido com todos os componentes necessários para produzir uma imagem, ao contrário do CCD que exige um amplificador e conversor analógico-digital à parte; Menor consumo de energia o CMOS exige até 100 vezes menos energia que um sensor CCD para funcionar, segundo a fabricante Teledyne FLIR - isso o torna mais adequado para eletrônicos com baterias, como celulares e câmeras digitais; Maior chance de ruído os circuitos embutidos no sensor CMOS, aumentam o risco de ruído nas imagens, como listras e outros padrões; Maior chance de distorções na imagem a maioria dos sensores CMOS usa o mecanismo "rolling shutter" para capturar fotos, lendo cada fileira de pixels por vez, o que pode causar distorções se o objeto estiver em movimento. Perguntas frequentes Como limpar um sensor CMOS de câmeras DSLR ou mirrorless?Vá para um local sem poeira e vento, remova a lente, e use um soprador de ar manual, sem encostá-lo no sensor; não use ar comprimido. Se a poeira não sair compre solução de limpeza para câmeras, pingue duas gotas em um cotonete e o mova suavemente pelo sensor. O que é Dual Pixel CMOS AF?Nesta tecnologia, todos os pixels podem capturar imagens e, ao mesmo tempo, ajustar o foco automático. Cada pixel tem dois fotodiodos Dual Pixel que podem ser lidos juntos para gerar a imagem; e separados, para obter o autofoco AF. Qual a diferença entre sensor CMOS 1/3 e 1/4?Um sensor de 1/3 polegada possui tamanho 78% a 118% maior que um sensor de 1/4 polegada, oferecendo uma qualidade de imagem melhor, incluindo na cor, brilho e contraste. Sensores do tipo 1/4" podem ter dimensões 3,2 x 2,4 mm ou 3,6 x 2,7 mm, segundo as empresas Vision Doctor e E-Con Systems. Qual o melhor sensor CMOS, APS-C ou full frame?O formato de sensor APS-C permite criar câmeras mais compactas e leves, ideais para viagens e fotografia de rua. O sensor full frame tem campo de visão mais amplo e é recomendado para panoramas e astrofotografia. O que é o sensor de imagem CMOS usado em câmeras?
Sowill you buy Canon 6D DSLR if it arrives with a New 28 Megapixel CMOS sensor ? share your thoughts with us The Camera is rumored to arrive in Early 2016. 1.Full frame or 70mm sensor camera 2. 129 Megapixels or more 3. 4K, 5K, 6K, 8K RAW video recording 4. ISO from 10 up to 1.000.000 non vedo l’ora di vederla e provarla aspetto
Sensores CMOS e CCD são componentes usados em câmeras para converter a luz em fotos. Eles podem afetar diretamente quesitos como resolução, sensibilidade à luz, reprodução de cores e consumo de energia. Entenda, a seguir, quais são as principais vantagens e desvantagens de cada tipo de sensor de imagem. Sensor CCD de webcam Imagem Ethan R / Flickr ÍndiceEntendendo as siglasComparando as tecnologiasResoluçãoCoresSensibilidadeVelocidadeConsumo de energiaCusto de fabricaçãoRecursos adicionaisCCD ou CMOS qual escolher? Entendendo as siglas CCD significa “dispositivo de carga acoplada” e tem um circuito composto por capacitores conectados acoplados uns aos outros. CMOS significa “semicondutor de óxido metálico complementar”, em uma referência ao seu processo de fabricação. Os sensores de imagem CCD e CMOS usam o mesmo princípio para tirar fotos ambos capturam a luz que vem da lente através de fotodiodos ou pixels e armazenam a luz como um sinal elétrico. Sensores CMOS e CCD usam essa carga elétrica de formas diferentes. Em um dispositivo CCD, o sinal elétrico é transportado para fora do sensor, é amplificado, e passa por um conversor analógico-digital. Assim, a carga de cada fotodiodo vira um valor digital. Em câmeras CMOS, os pixels vêm com amplificadores para o sinal elétrico, e esta carga já passa por um conversor analógico-digital antes de sair – assim, o sensor emite valores digitais. Como funciona o sensor CCD imagem Vitor Pádua / Tecnoblog Como funciona o sensor CMOS de uma câmera Imagem Vitor Pádua / Tecnoblog Comparando as tecnologias CaracterísticaCCDCMOSResoluçãoAté megapixelsChega a 200 megapixelsCoresMaior fidelidadeMenor fidelidadeSensibilidade à luzMaiorMenorVelocidade de capturaMenor, limitada a 11 fpsMaior, pode passar dos 45 fpsConsumo de energiaMaior, até 100x a mais que CMOSMenorCusto de fabricaçãoMais caroMais barato Resolução Sensores CCD permitem chegar a resoluções altíssimas o recordista tem megapixels, segundo o Guinness Book. Por sua vez, sensores CMOS atingem 200 megapixels, caso do Samsung Isocell HP2. A qualidade de imagem no CCD é maior. Graças a seu processo de fabricação, o sensor transporta cargas elétricas sem distorções através do chip, levando a um sinal mais uniforme e ruído menor. O CCD oferece qualidade melhor em cenários exigentes, como em câmeras TDI para cenários com pouca luz e muito movimento; e para capturar imagens no espectro NIR próximo ao infravermelho. No entanto, a qualidade do CMOS já se aproxima do CCDs em alguns casos, graças a avanços nessa tecnologia, segundo a fabricante Teledyne. Por exemplo, sensores CMOS são usados em vez de CCDs para obter imagens ultravioleta, graças a sua alta velocidade de leitura. Galaxy S23 Ultra, celular com sensor CMOS de 200 megapixels Imagem Paulo Higa/Tecnoblog Cores Sensores CCD reproduzem cores com maior precisão que o CMOS, segundo a fabricante de câmeras industriais Adimec. Os CCDs produzem imagens com maior alcance dinâmico e menos ruído, conforme explica a Olympus. No entanto, a diferença entre CMOS e CCD vem diminuindo. Em testes com câmeras da Nikon, o especialista Enrico Scaramelli não encontrou diferenças significativas na reprodução de cores. Tanto o CMOS como o CCD são monocromáticos, mas possuem um filtro de cor na frente dos pixels, que deixa passar só determinados tons. Filtros RGB, por exemplo, recebem só as cores vermelho, verde e azul. Estes tons são usados para calcular as cores reais da cena. Sensibilidade Sensores CCD têm maior sensibilidade à luz, porque cada pixel é quase que totalmente dedicado a receber o sinal luminoso. Isso permite atingir valores ISO mais altos. Em sensores CMOS, parte da luz atinge os transistores que acompanham cada pixel. No CMOS, cada pixel tem componentes adicionais, como amplificadores e conversores de sinal, que reduzem a área disponível para captação de luz. Além disso, o sinal elétrico sofre distorções ao ser transportado pelo chip. Ajuste de ISO na câmera Imagem Felipe Ventura / Tecnoblog Velocidade Sensores CMOS atingem maior velocidade cada pixel tem transistores para amplificar o sinal elétrico e convertê-lo, antes de transportá-lo para fora do chip. Isso garante um processamento paralelo que agiliza a captura de imagens. Sensores CMOS podem passar dos 45 fps quadros por segundo, enquanto sensores CCD ficam limitados a 11 fps, segundo a especialista Christina Pyrgaki. No entanto, sensores CMOS podem gerar imagens distorcidas de objetos em movimento devido ao método rolling shutter, que consiste em capturar a imagem linha por linha. O CCD, por sua vez, lê todos os pixels de uma vez. Consumo de energia Sensores CMOS consomem até 100 vezes menos energia que um sensor CCD equivalente, segundo a Teledyne FLIR. Os sensores CMOS são bastante usados em celulares, maior segmento de câmeras do mundo, porque são menores, geram menos calor e gastam menos bateria. Custo de fabricação Os sensores CMOS são muito mais baratos de fabricar do que os sensores CCD, como afirma a Edge AI and Vision Alliance. Os dispositivos CMOS têm menor complexidade e podem ser fabricados na maioria das linhas de produção de memória e componentes lógicos. Os sensores CCD ainda podem ser necessários para equipamentos profissionais. Mas, dado que as fabricantes de sensores se afastaram da tecnologia CCD, haverá menos opções de fornecedores, elevando o preço. Recursos adicionais A maioria das câmeras CMOS possui sensor com iluminação frontal os transistores ficam ao lado dos pixels, e reduzem a área sensível à luz. O CMOS retroiluminado BSI, na sigla em inglês coloca os transistores abaixo da superfície que recebe a luz. O BSI CMOS tem sensibilidade maior à luz, atingindo eficiência de 95%, segundo a Teledyne Photometrics. O CMOS comum tem eficiência de até 80%. O CMOS empilhado stacked CMOS possui uma superfície sensível à luz acima dos transistores, assim como o BSI CMOS. Além disso, o processador de imagem ISP fica empilhado com a memória DRAM rápida, acelerando a captura de fotos. Algumas câmeras CMOS vêm com estabilização de imagem no corpo IBIS. A tecnologia, também conhecida como sensor shift, move o sensor acompanhando o movimento da câmera, usando giroscópio e acelerômetro. CCD ou CMOS qual escolher? Sensores CCD são recomendados para aplicações que exigem maior precisão nas cores, melhor desempenho em pouca luz e menos ruído. Isso vale para áreas como astronomia e biomedicina. Sensores CMOS são indicados para dispositivos compactos, como smartphones, ou que não requerem uma qualidade de imagem tão alta, como câmeras de segurança. Vale lembrar que câmeras DSLR e mirrorless mais recentes também costumam usar sensores CMOS. Active-pixel sensorCMOSDispositivo de carga acopladaDSLRNikon
ZWOptical (ZWO ASI) ZWO ASI174MM USB 3.0 monochromatic CMOS ZWO ASI174MM USB 3.0 monochromatic CMOS camera for hi res imaging. Features: sensor 1/1.2″ CMOS IMX174, resolution 2.35 mega pixels 1936×1216, pixel size 5.86 µm, exposure range 32µs-300 s, ST4 guider port, interface USB 3.0 / USB 2.0, bit rate 12bit output (12bit ADC). In stock.
Sensor adalah sebuah komponen dalam kamera digital yg bertugas untuk mengubah gambar yang ditangkap oleh lensa. Sensor tersebut terdiri atas berbagai sel yang tersusun membentuk persegi panjang. Tiap satu sel sensor tersebut merepresentasikan satu piksel, jadi banyaknya sel dalam satu sensor kamera sesuai dengan besarnya piksel gambar yang dapat dihasilkan dari kamera sensor pada kamera tersebut bersifat photosensitive. Artinya, saat terkena cahaya, sel sensor akan menghasilkan sinyal listrik berupa tegangan yang besarnya sesuai dengan intensitas cahaya yang diterimanya. Tegangan yang dihasilkan tersebut kemudian diproses oleh prosesor yang ada pada sensor tersebut untuk mengolah sinyal tersebut menjadi warna. Hasil dari seluruh sel sensor kemudian disatukan dan membentuk satu kesatuan gambar yang utuh. Sensor kamera ini ternyata sangat berpengaruh terhadap kualitas gambar. Untuk jumlah piksel yang sama, sensor yang ukurannya lebih besar dapat menghasilkan gambar dengan kualitas yang lebih baik. Hal ini dikarenakan sensor yang berukuran lebih besar umumnya lebih peka terhadap cahaya, sehingga intensitas cahaya yang diterimanya pun dapat lebih besar. Inilah mengapa kualitas gambar kamera DSLR bisa jauh lebih baik dari kamera HP meski resolusinya sama Sensor CMOS vs sensor CCD Perbedaan utama desain CMOS dan CCD adalah pada sirkuit digitalnya. Setiap piksel pada sensor CMOS sudah memakai sistem chip yang langsung mengkonversi tegangan menjadi data, sementara piksel-piksel pada sensor CCD hanya berupa photodioda yang mengeluarkan sinyal analog sehingga perlu rangkaian terpisah untuk merubah dari analog ke digital/ADC. Anda mungkin penasaran mengapa banyak produsen yang kini beralih ke sensor CMOS, padahal secara hasil foto sensor CCD juga sudah memenuhi standar. Alasan utamanya menurut saya adalah soal kepraktisan, dimana sekeping sensor CMOS sudah mampu memberi keluaran data digital siap olah sehingga meniadakan biaya untuk membuat rangkaian ADC Selain itu sensor CMOS juga punya kemampuan untuk diajak bekerja cepat yaitu sanggup mengambil banyak foto dalam waktu satu detik. Ini tentu menguntungkan bagi produsen yang ingin menjual fitur high speed burst. Faktor lain yang juga perlu dicatat adalah sensor CMOS lebih hemat energi sehingga pemakaian baterai lebih awet. Maka itu tak heran kini semakin banyak kamera digital DSLR maupun kamera saku yang akhirnya beralih ke sensor CMOS. Adapun soal kemampuan sensor CMOS dalam ISO tinggi pada dasarnya tak berbeda dengan sensor CCD dimana noise yang ditimbulkan juga linier dengan kenaikan ISO. Kalau ada klaim sensor CMOS lebih aman dari noise maka itu hanya kecerdikan produsen dalam mengatur noise reduction Cara sensor menangkap’ warna Sensor gambar pada dasarnya merupakan perpaduan dari chip peka cahaya untuk mendapat informasi terang gelap dan filter warna untuk merekam warna seakurat mungkin. Di era fotografi film, pada sebuah roll film terdapat tiga lapis emulsi yang peka terhadap warna merah Red, hijau Green dan biru Blue. Di era digital, sensor kamera memiliki bermacam variasi desain teknologi filter warna tergantung produsennya dan harga sensornya. Cara kerja filter warna cukup simpel, misal seberkas cahaya polikromatik multi warna melalui filter merah, maka warna apapun selain warna merah tidak bisa lolos melewati filter itu. Dengan begitu sensor hanya akan menghasilkan warna merah saja. Untuk mewujudkan jutaan kombinasi warna seperti keadaan aslinya, cukup memakai tiga warna filter yaitu RGB sama seperti film dan pencampuran dari ketiga warna komplementer itu bisa menghasilkan aneka warna yang sangat banyak. Hal yang sama kita bisa jumpai juga di layar LCD seperti komputer atau ponsel yang tersusun dari piksel RGB Bayer CFA Sesuai nama penemunya yaitu Bryce Bayer, seorang ilmuwan dari Kodak pertama kali memperkenalkan teknik ini di tahun 1970. Sensor dengan desain Bayer Color Filter Array CFA termasuk sensor paling banyak dipakai di kamera digital hingga saat ini. Keuntungan desain sensor Bayer adalah desain mosaik filter warna yang simpel cukup satu lapis, namun sudah mencakup tiga elemen warna dasar yaitu RGB lihat ilustrasi di atas. Kerugiannya adalah setiap satu piksel pada dasarnya hanya melihat’ satu warna, maka untuk bisa menampilkan warna yang sebenarnya perlu dilakukan teknik color sampling dengan perhitungan rumit berupa interpolasi demosaicing. Perhatikan ilustrasi mosaik piksel di bawah ini, ternyata filter warna hijau punya jumlah yang lebih banyak dibanding warna merah dan biru. Hal ini dibuat mengikuti sifat mata manusia yang lebih peka terhadap warna hijau Kekurangan sensor Bayer yang paling disayangkan adalah hasil foto yang didapat dengan cara interpolasi tidak bisa menampilkan warna sebaik aslinya. Selain itu kerap terjadi moire pada saat sensor menangkap pola garis yang rapat seperti motif di kemeja atau pada bangunan. Cara termudah mengurangi moire adalah dengan memasang filter low pass yang bersifat anti aliasing, yang membuat ketajaman foto sedikit menurun Sensor X Trans Sensor dengan nama X Trans dikembangkan secara ekslusif oleh Fujifilm, dan digunakan pada beberapa kamera kelas atas fuji seperti X-E2 dan X-T1. Desain filter warna di sensor X Trans merupakan pengembangan dari desain Bayer yang punya kesamaan bahwa setiap piksel hanya bisa melihat satu warna. Bedanya, Fuji menata ulang susunan filter warna RGBnya. Bila pada desain Bayer kita menemui dua piksel hijau, satu merah dan satu biru pada grid 2×2, maka di sensor X Trans kita akan menemui pola grid 6×6 yang berulang. Nama X trans sepertinya diambil dari susunan piksel hijau dalam grid 6×6 yang membentuk huruf X seperti contoh di bawah ini Fuji mengklaim beberapa keunggulan desain X Trans seperti tidak perlu filter low pass, karena desain pikselnya sudah aman dari moire terhindar dari false colour, karena setiap baris piksel punya semua elemen warna RGB tata letak filter warna yang agak acak memberi kesan grain layaknya film Sepintas kita bisa setuju kalau desain X Trans lebih baik daripada Bayer, namun ada beberapa hal yang masih jadi kendala dari desain X Trans ini, yaitu hampir tidak mungkin Fuji akan memberikan lisensi X Trans ke produsen kamera lain artinya hanya pemilik kamera Fuji tipe tertentu yang bisa menikmati sensor ini. Kendala lain adalah sulitnya dukungan aplikasi editing untuk bisa membaca file RAW dari sensor X Trans ini
. jlf4c4lann.pages.dev/953jlf4c4lann.pages.dev/540jlf4c4lann.pages.dev/12jlf4c4lann.pages.dev/441jlf4c4lann.pages.dev/454jlf4c4lann.pages.dev/938jlf4c4lann.pages.dev/488jlf4c4lann.pages.dev/616jlf4c4lann.pages.dev/37jlf4c4lann.pages.dev/864jlf4c4lann.pages.dev/849jlf4c4lann.pages.dev/147jlf4c4lann.pages.dev/310jlf4c4lann.pages.dev/467jlf4c4lann.pages.dev/423
sensor cmos pada kamera smartphone